THE EFFECT OF FIBER-MATRIX REACTIONS ON THE INTERFACE PROPERTIES IN A SCS-6/Ti-24Al-11 Nb COMPOSITE

نویسنده

  • HAYDN N. G. WADLEY
چکیده

The interfacial structure/property relationships of a representative composite system consisting of SIC (SCS-6) fibers in a T&Al + Nb intermetallic alloy have been investigated. Two samples were fabricated at 1040°C with different exposure times in order to vary the amount of fiber-matrix reaction. This resulted in samples with reaction zone thicknesses (S) of 1.1 and 1.7pm, while ensuring roughly the same residual stress state. A pushout test was used to determine the debond strength (~4) and sliding resistance (I,) of both interfaces. An increase in the interface debond strength and sliding resistance with reaction zone thickness was observed and has been correlated with a change in debond path. Pushout analysis of the 6 = 1.1 pm sample (where debonding occurred between the fiber’s SCS carbon coating and the reaction product) revealed a debond fracture energy, Ii I: O-O.9 J mm2, a coefficient of friction (assuming simple Coulomb friction), p = 0.5-0.95, and a radial residual stress, u, = 100-190 MPa. A similar analysis on the 6 = 1.7 pm sample proved unsuccessful using either a simple Coulomb or Coulomb plus constant friction law. This is believed to be due to multiple debond path branching between the SiC/ inner SCS, inner SCWouter SCS and outer SCWeaction product interfaces. The transition to this mode of sliding is deleterious to composite properties and suggests the importance of minimizing the integrated thermal exposure associated with the consolidation process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

COMMONALITY OF PHENOMENA IN COMPOSITE MATERIALS The effect of molybdenum on the microstructure and creep behavior of Ti–24Al–17Nb–xMo alloys and Ti–24Al–17Nb–xMo SiC-fiber composites

The effect of molybdenum (Mo) on the microstructure and creep behavior of nominally Ti–24Al– 17Nb (at.%) alloys and their continuously reinforced SiCfiber composites (fiber volume fraction = 0.35) was investigated. Constant-load, tensile-creep experiments were performed in the stress range of 10–275 MPa at 650 C in air. A Ti–24Al–17Nb–2.3Mo (at.%) alloy exhibited significantly greater creep res...

متن کامل

Moisture Diffusion Properties of Fabric Composite (Glass Fiber/Epoxy Resin)

In this study, the effect of hygrothermal conditioning on the moisture diffusion properties of the fabric composite (glass fiber/epoxy resin) was investigated. The water uptake of the specimens conditioned in humid environment at different relative humidities (0, 60 and 96 % r.h) at constant temperature (60°C) was evaluated by weight gain measurements. The moisture diffusion properties of the f...

متن کامل

Strength and Toughness of Reinforced Concrete with Coated Steel Fibers

The effect of zinc phosphate (ZP) and zinc calcium phosphate (ZCP) coatings on the reinforcing mechanisms of smooth steel fiber in cementitious matrix have been studied. The results of pull out tests illustrated that by coating smooth steel fiber the pull-out load may be increased up to 100%. The effect of zinc phosphate coating on interface bonding was more than zinc-calcium phosphate coating....

متن کامل

EFFECTS OF ELEVATED TEMPERATURE ON MECHANICAL BEHAVIOR OF AN ALUMINUM METAL MATRIX COMPOSITE

Effects of temperature on properties and behavior of a 20 vol % particulate SiC reinforced 6061 aluminum alloy and 6061 unreinforced Al alloy were investigated. Yield strength and elongation to failure were measured as a function of test temperatures up to 180^oC. In addition, the effects of holding time at 180^ oC on tensile properties and fracture mechanisms of the materials at this temperatu...

متن کامل

Effect of Redmud Particulates on Mechanical Properties of BFRP Composites (TECHNICAL NOTE)

This article reports the effective usage of redmud(RM) an industrial waste ,as a  novel filler in polymer matrix. The composite has been fabricated with redmud as secondary reinforcement in banana fiber reinforced polyester (BFRP) using compression molding technique. The mechanical properties such as tensile, flexural and impact strength have been studied for different fiber weight percentage, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004